
Enhanced PID (PIDE)

The PIDE instruction provides enhanced capabilities over the standard PID instruction. The instruction uses the
velocity form of the PID algorithm. The gain terms are applied to the change in the value of error or PV, not the
value of error or PV.

 Available Languages

 Relay Ladder

This instruction is not available in relay ladder logic.

 Function Block

 Structured Text

PIDE(PIDE_tag);

 Operands

 Function Block
Operand Type Format Description

PIDE tag PIDE_ENHANCED structure PIDE structure
autotune tag PIDE_AUTOTUNE structure (optional)

autotune structure
 Structured Text

Operand Type Format Description

PIDE tag PIDE_ENHANCED structure PIDE structure

 D2SD Structure
Input Parameter Data Type Description

EnableIn BOOL Function Block:
Enable input. If cleared, the instruction does not execute and
outputs are not updated.

Default is set.
Structured Text:
No effect. The instruction executes.

PV REAL Scaled process variable input. This value is typically read from
an analog input module.
Valid = any float
Default = 0.0

PVFault BOOL PV bad health indicator. If PV is read from an analog input,
then PVFault is normally controlled by the analog input fault
status. When PVFault is set, it indicates the input signal has
an error.
Default is cleared = "good health"

PVEUMax REAL Maximum scaled value for PV. The value of PV and SP which
corresponds to 100 percent span of the Process Variable.
Valid = PVEUMin < PVEUMax £ maximum positive float
Default = 100.0

PVEUMin REAL Minimum scaled value for PV. The value of PV and SP which
corresponds to 0 percent span of the Process Variable.
Valid = maximum negative float £ PVEUMin < PVEUMax
Default = 0.0

SPProg REAL SP program value, scaled in PV units. SP is set to this value
when in Program control and not Cascade/Ratio mode. If the
value of SPProg < SPLLimit or > SPHLimit, the instruction sets
the appropriate bit in Status and limits the value used for SP.
Valid = SPLLimit to SPHLimit
Default = 0.0

SPOper REAL SP operator value, scaled in PV units. SP is set to this value
when in Operator control and not Cascade/Ratio mode. If the
value of SPOper < SPLLimit or > SPHLimit, the instruction sets
the appropriate bit in Status and limits the value used for SP.
Valid = SPLLimit to SPHLimit
Default = 0.0

SPCascade REAL SP Cascade value, scaled in PV units. If CascadeRatio is set
and UseRatio is cleared, then SP = SPCascade. This is
typically the CVEU of a primary loop. If CascadeRatio and
UseRatio are set, then SP = (SPCascade x Ratio). If the value
of SPCascade < SPLLimit or > SPHLimit, set the appropriate
bit in Status and limit the value used for SP.
Valid = SPLLimit to SPHLimit
Default = 0.0

SPHLimit REAL SP high limit value, scaled in PV units. If SPHLimit >
PVEUMax, the instruction sets the appropriate bit in Status.
Valid = SPLLimit to PVEUMax
Default = 100.0

SPLLimit REAL SP low limit value, scaled in PV units. If SPLLimit < PVEUMin,
the instruction sets the appropriate bit in Status. If SPHLimit <
SPLLimit, the instruction sets the appropriate bit in Status and
limits SP using the value of SPLLimit.
Valid = PVEUMin to SPHLimit
Default = 0.0

UseRatio BOOL Allow ratio control permissive. Set to enable ratio control when
in Cascade/Ratio mode.
Default is cleared.

RatioProg REAL Ratio program multiplier. Ratio and RatioOper are set equal to
this value when in Program control. If RatioProg < RatioLLimit
or > RatioHLimit, the instruction sets the appropriate bit in
Status and limits the value used for Ratio.
Valid = RatioLLimit to RatioHLimit
Default = 1.0

RatioOper REAL Ratio operator multiplier. Ratio is set equal to this value when
in Operator control. If RatioOper < RatioLLimit or >
RatioHLimit, the instruction sets the appropriate bit in Status
and limits the value used for Ratio.

Valid = RatioLLimit to RatioHLimit
Default = 1.0

RatioHLimit REAL Ratio high limit value. Limits the value of Ratio obtained from
RatioProg or RatioOper. If RatioHLimit < RatioLLimit, the
instruction sets the appropriate bit in Status and limits Ratio
using the value of RatioLLimit.
Valid = RatioLLimit to maximum positive float
Default = 1.0

RatioLLimit REAL Ratio low limit value. Limits the value of Ratio obtained from
RatioProg or RatioOper. If RatioLLimit < 0, the instruction sets
the appropriate bit in Status and limits the value to zero. If
RatioHLimit < RatioLLimit, the instruction sets the appropriate
bit in Status and limits Ratio using the value of RatioLLimit.
Valid = 0.0 to RatioHLimit
Default = 1.0

CVFault BOOL Control variable bad health indicator. If CVEU controls an
analog output, then CVFault normally comes from the analog
output’s fault status. When set, CVFault indicates an error on
the output module and the instruction sets the appropriate bit in
Status.
Default is cleared = "good health"

CVInitReq BOOL CV initialization request. This signal is normally controlled by
the "In Hold" status on the analog output module controlled by
CVEU or from the InitPrimary output of a secondary PID loop.
Default is cleared.

CVInitValue REAL CVEU initialization value, scaled in CVEU units. When
CVInitializing is set, CVEU = CVInitValue and CV equals the
corresponding percentage value. CVInitValue comes from the
feedback of the analog output controlled by CVEU or from the
setpoint of a secondary loop. Instruction initialization is
disabled when CVFaulted or CVEUSpanInv is set.
Valid = any float
Default = 0.0

CVProg REAL CV program manual value. CV equals this value when in
Program Manual mode. If CVProg < 0 or > 100, or < CVLLimit
or > CVHLimit when CVManLimiting is set, the instruction sets
the appropriate bit in Status and limits the CV value.
Valid = 0.0 to 100.0
Default = 0.0

CVOper REAL CV operator manual value. CV equals this value when in
Operator Manual mode. If not Operator Manual mode, the
instruction sets CVOper = CV at the end of each instruction
execution. If CVOper < 0 or > 100, or < CVLLimit or >
CVHLimit when CVManLimiting is set, the instruction sets the
appropriate bit in Status and limits the CV value.
Valid = 0.0 to 100.0
Default = 0.0

CVOverride REAL CV override value. CV equals this value when in override
mode. This value should correspond to a safe state output of
the PID loop. If CVOverride < 0 or >100, the instruction sets
the appropriate bit in Status and limits the CV value.
Valid = 0.0 to 100.0
Default = 0.0

CVPrevious REAL

CVSetPrevious BOOL

CVManLimiting BOOL Limit CV in manual mode request. If Manual mode and
CVManLimiting is set, CV is limited by the CVHLimit and

CVLLimit values.
Default is cleared.

CVEUMax REAL Maximum value for CVEU. The value of CVEU which
corresponds to 100 percent CV. If CVEUMax = CVEUMin, the
instruction sets the appropriate bit in Status.
Valid = any float
Default = 100.0

CVEUMin REAL Minimum value of CVEU. The value of CVEU which
corresponds to 0 percent CV. If CVEUMax = CVEUMin, the
instruction sets the appropriate bit in Status.
Valid = any float
Default = 0.0

CVHLimit REAL CV high limit value. This is used to set the CVHAlarm output.
It is also used for limiting CV when in Auto or Cascade/Ratio
mode, or Manual mode if CVManLimiting is set. If CVHLimit >
100 or < CVLLimit, the instruction sets the appropriate bit in
Status. If CVHLimit < CVLLimit, the instruction limits CV using
the value of CVLLimit.
Valid = CVLLimit < CVHLimit £ 100.0
Default = 100.0

CVLLimit REAL CV low limit value. This is used to set the CVLAlarm output. It
is also used for limiting CV when in Auto or Cascade/Ratio
mode, or Manual mode if CVManLimiting is set. If CVLLimit <
0 or CVHLimit < CVLLimit, the instruction sets the appropriate
bit in Status. If CVHLimit < CVLLimit, the instruction limits CV
using the value of CVLLimit.
Valid = 0.0 £ CVLLimit < CVHLimit
Default = 0.0

CVROCLimit REAL CV rate of change limit, in percent per second. Rate of change
limiting is only used when in Auto or Cascade/Ratio modes or
Manual mode if CVManLimiting is set. Enter 0 to disable CV
ROC limiting. If CVROCLimit < 0, the instruction sets the
appropriate bit in Status and disables CV ROC limiting.
Valid = 0.0 to maximum positive float
Default = 0.0

FF REAL Feed forward value. The value of feed forward is summed with
CV after the zero-crossing deadband limiting has been applied
to CV. Therefore changes in FF are always reflected in the
final output value of CV. If FF < –100 or > 100, the instruction
sets the appropriate bit in Status and limits the value used for
FF.
Valid = -100.0 to 100.0
Default = 0.0

FFPrevious REAL

FFSetPrevious BOOL

HandFB REAL CV Hand feedback value. CV equals this value when in Hand
mode and HandFBFault is cleared (good health). This value
typically comes from the output of a field mounted hand/ auto
station and is used to generate a bumpless transfer out of hand
mode. If HandFB < 0 or > 100, the instruction sets the
appropriate bit in Status and limits the value used for CV.
Valid = 0.0 to 100.0
Default = 0.0

HandFBFault BOOL HandFB value bad health indicator. If the HandFB value is
read from an analog input, then HandFBFault is typically
controlled by the status of the analog input channel. When set,
HandFBFault indicates an error on the input module and the
instruction sets the appropriate bit in Status.
Default is cleared = "good health"

WindupHIn BOOL Windup high request. When set, the CV is not allowed to
increase in value. This signal is typically obtained from the
WindupHOut output from a secondary loop.
Default is cleared.

WindupLIn BOOL Windup low request. When set, the CV is not allowed to
decrease in value. This signal is typically obtained from the
WindupLOut output from a secondary loop.
Default is cleared.

ControlAction BOOL Control action request. Set to calculate error as E = PV - SP;
clear to calculate error as E = SP - PV.
Default is cleared.

DependIndepend BOOL Dependent/independent control request. When set, use the
dependent form of the PID equation; when cleared, use the
independent form of the equations.
Default is cleared.

PGain REAL Proportional gain. When the independent form of the PID
algorithm is selected, enter the unitless proportional gain into
this value. When the dependent PID algorithm is selected,
enter the unitless controller gain into this value. Enter 0 to
disable the proportional control. If PGain < 0, the instruction
sets the appropriate bit in Status and uses of value of PGain =
0.
Valid = 0.0 to maximum positive float
Default = 0.0

IGain REAL Integral gain. When the independent form of the PID algorithm
is selected, enter the integral gain in units of 1/minutes into this
value. When the dependent PID algorithm is selected, enter
the integral time constant in units of minutes/repeat into this
value. Enter 0 to disable the integral control. If IGain < 0, the
instruction sets the appropriate bit in Status and uses a value
of IGain = 0.
Valid = 0.0 to maximum positive float
Default = 0.0

DGain REAL Derivative gain. When the independent form of the PID
algorithm is selected, enter the derivative gain in units of
minutes into this value. When the dependent PID algorithm is
used, enter the derivative time constant in units of minutes into
this value. Enter 0 to disable the derivative control. If DGain <
0, the instruction sets the appropriate bit in Status and uses a
value of DGain = 0.
Valid = 0.0 to maximum positive float
Default = 0.0

PVEProportional BOOL Proportional PV control request. When set, calculate the
proportional term (DeltaPTerm) using the change in process
variable (PVPercent). When cleared, use the change in error
(EPercent).
Default is cleared.

PVEDerivative BOOL Derivative PV control request. When set, calculate the
derivative term (DeltaDTerm) using the change in process
variable (PVPercent). When cleared, use the change in error
(EPercent).
Default is set

DSmoothing BOOL Derivative Smoothing request. When set, changes in the
derivative term are smoothed. Derivative smoothing causes
less output "jitters" as a result of a noisy PV signal but also
limits the effectiveness of high derivative gains.
Default is cleared.

PVTracking BOOL SP track PV request. Set to cause SP to track PV when in
manual mode. Ignored when in Cascade/Ratio or Auto mode.
Default is cleared.

ZCDeadband REAL Zero crossing deadband range, scaled in PV units. Defines the
zero crossing deadband range. Enter 0 to disable the zero
crossing deadband checking. If ZCDeadband < 0, the
instruction sets the appropriate bit in Status and disables zero

crossing deadband checking.
Valid = 0.0 to maximum positive float
Default = 0.0

ZCOff BOOL Zero crossing disable request. Set to disable zero crossing for
the deadband calculation.
Default is cleared.

PVHHLimit REAL PV high-high alarm limit value, scaled in PV units.
Valid = any float
Default = maximum positive float

PVHLimit REAL PV high alarm limit value, scaled in PV units.
Valid = any float
Default = maximum positive float

PVLLimit REAL PV low alarm limit value, scaled in PV units.
Valid = any float
Default = maximum negative float

PVLLLimit REAL PV low-low alarm limit value, scaled in PV units.
Valid = any float
Default = maximum negative float

PVDeadband REAL PV alarm limit deadband value, scaled in PV units. Deadband
is the delta value between the turn-on and turn-off value for
each of the PV alarm limits. If PVDeadband < 0.0, the
instruction sets the appropriate bit in Status and limits
PVDeadband to zero.
Valid = 0.0 to maximum positive float
Default = 0.0

PVROCPosLimit REAL PV positive rate of change alarm limit. The limit value for a
positive (increasing) change in PV, scaled in PV units per
seconds. Enter 0.0 to disable positive PVROC alarm
checking. If PVROCPosLimit < 0.0, the instruction sets the
appropriate bit in Status and disables PVROC checking.
Valid = 0.0 to maximum positive float
Default = 0.0 PV/second

PVROCNegLimit REAL PV negative rate of change alarm limit. The limit value for a
negative (decreasing) change in PV, scaled in PV units per
seconds. Enter 0.0 to disable negative PVROC alarm
checking. If PVROCNegLimit < 0, the instruction sets the
appropriate bit in Status and disables negative PVROC
checking.
Valid = 0.0 to maximum positive float
Default = 0.0

PVROCPeriod REAL PV rate of change sample period. The time period, in seconds,
over which the rate of change for PV is evaluated. Enter 0 to
disable PVROC alarm checking If PVROCPeriod < 0.0, the
instruction sets the appropriate bit in Status, and disables
positive and negative PVROC checking.
Valid = any float ³ 0.0
Default = 0.0 seconds

DevHHLimit REAL Deviation high-high alarm limit value, scaled in PV units.
Deviation is the difference in value between the process
variable (PV) and the setpoint (SP). Deviation alarming alerts
the operator to a discrepancy between the process variable
and the setpoint value. If DevHHLimit < 0.0, the instruction
sets the appropriate bits in Status and sets DevHHLimit = 0.0.
Valid = 0.0 to maximum positive float
Default = maximum positive float

DevHLimit REAL Deviation high alarm limit value, scaled in PV units. Deviation
is the difference in value between the process variable (PV)
and the setpoint (SP). Deviation alarming alerts the operator to
a discrepancy between the process variable and the setpoint
value. If DevHLimit < 0.0, the instruction sets the appropriate
bit in Status and sets DevHLimit = 0.0.
Valid = 0.0 to maximum positive float
Default = maximum positive float

DevLLimit REAL Deviation low alarm limit value, scaled in PV units. Deviation is

the difference in value between the process variable (PV) and
the setpoint (SP). Deviation alarming alerts the operator to a
discrepancy between the process variable and the setpoint
value. If DevLLimit < 0.0, the instruction sets the appropriate
bit in Status and sets DevLLimit = 0.0.
Valid = 0.0 to maximum positive float
Default = maximum positive float

DevLLLimit REAL Deviation low-low alarm limit value, scaled in PV units.
Deviation is the difference in value between the process
variable (PV) and the setpoint (SP). Deviation alarming alerts
the operator to a discrepancy between the process variable
and the setpoint value. If DevLLLimit < 0.0, the instruction sets
the appropriate bit in Status and sets DevLLLimit = 0.0.
Valid = 0.0 to maximum positive float
Default = maximum positive float

DevDeadband REAL The deadband value for the Deviation alarm limits, scaled in
PV units. Deadband is the delta value between the turn-on and
turn-off value for each of the Deviation alarm limits. If
DevDeadband < 0.0, the instruction sets the appropriate bit in
Status and sets DevDeadband = 0.0.
Valid = 0.0 to maximum positive float
Default = 0.0

AllowCasRat BOOL Allow cascade/ratio mode permissive. Set to allow
Cascade/Ratio mode to be selected using either
ProgCascadeRatioReq or OperCascadeRatioReq.
Default is cleared.

ManualAfterInit BOOL Manual mode after initialization request. When set, the
instruction is placed in Manual mode when CVInitializing is set,
unless the current mode is Override or Hand. When
ManualAfterInit is cleared, the instruction’s mode is not
changed, unless requested to do so.
Default is cleared.

ProgProgReq BOOL Program program request. Set by the user program to request
Program control. Ignored if ProgOperReq is set. Holding this
set and ProgOperReq cleared locks the instruction in Program
control. When ProgValueReset is set, the instruction clears the
input each execution.
Default is cleared.

ProgOperReq BOOL Program operator request. Set by the user program to request
Operator control. Holding this set locks the instruction in
Operator control. When ProgValueReset is set, the instruction
clears the input each execution.
Default is cleared.

ProgCasRatReq BOOL Program cascade/ratio mode request. Set by the user program
to request Cascade/Ratio mode. When ProgValueReset is set,
the instruction clears the input each execution.
Default is cleared.

RogoAutoReq BOOL Program auto mode request. Set by the user program to
request Auto mode. When ProgValueReset is set, the
instruction clears the input each execution.
Default is cleared.

ProgManualReq BOOL Program manual mode request. Set by the user program to
request Manual mode. When ProgValueReset is set, the
instruction clears the input each execution.
Default is cleared.

ProgOverrideReq BOOL Program override mode request. Set by the user program to
request Override mode. When ProgValueReset is set, the
instruction clears the input each execution.
Default is cleared.

ProgHandReq BOOL Program hand mode request. Set by the user program to
request Hand mode. This value is usually read as a digital
input from a hand/auto station. When ProgValueReset is set,
the instruction clears the input each execution.
Default is cleared.

OperProgReq BOOL Operator program request. Set by the operator interface to
request Program control. The instruction clears this input each
execution.
Default is cleared.

OperOperReq BOOL Operator operator request. Set by the operator interface to
request Operator control. The instruction clears this input each
execution.
Default is cleared.

OperCasRatReq BOOL Operator cascade/ratio mode request. Set by the operator
interface to request Cascade/ Ratio mode. The instruction
clears this input each execution.
Default is cleared.

OperAutoReq BOOL Operator auto mode request. Set by the operator interface to
request Auto mode. The instruction clears the input each
execution.
Default is cleared.

OperManualReq BOOL Operator manual mode request. Set by the operator interface
to request Manual mode. The instruction clears the input each
execution.
Default is cleared.

ProgValueReset BOOL Reset program control values. When set, all the program
request inputs are cleared by the instruction each execution.
When set and in Operator control, the instruction sets
SPProgram = SP and CVProgram = CV.
Default is cleared.

TimingMode DINT Selects timing execution mode.
Value Description

0 periodic mode
1 oversample mode
2 real time sampling mode
For more information about timing modes, see Function Block
Attributes.
Valid = 0 to 2
Default = 0

OversampleDT REAL Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default = 0

RTSTime DINT Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default = 1

RTSTimeStamp DINT Module time stamp value for real time sampling mode.
Valid = 0 to 32,767ms
Default = 0

Output Parameter Data Type Description

EnableOut BOOL Enable output.
CVEU REAL Scaled control variable output. Scaled using CVEUMax and

CVEUMin, where CVEUMax corresponds to 100 percent and
CVEUMin corresponds to 0 percent. This output typically
controls an analog output module or a secondary loop.
Arithmetic flags are set for this output.
CVEU = (CV x CVEUSpan / 100) + CVEUMin
CVEU span calculation: CVEUSpan = (CVEUMax - CVEUMin)

CV REAL Control variable output. This value is expressed as 0 to 100
percent. CV is limited by CVHLimit and CVLLimit when in auto
or cascade/ratio mode or manual mode if CVManLimiting is
set. Otherwise this value is limited by 0 and 100 percent.
Arithmetic flags are set for this output.

CVInitializing BOOL Initialization mode indicator. CVInitializing is set when
CVInitReq is set, during instruction first scan, and on a set to
cleared transition of CVHealth (bad to good). CVInitializing is
cleared after the instruction has been initialized and CVInitReq
is cleared.

CVHAlarm BOOL CV high alarm indicator. Set when the calculated value of
CV > 100 or CVHLimit.

CVLAlarm BOOL CV low alarm indicator. Set when the calculated value of
CV < 0 or CVLLimit.

CVROCAlarm BOOL CV rate of change alarm indicator. Set when the calculated
rate of change for CV exceeds CVROCLimit.

SP REAL Current setpoint value. The value of SP is used to control CV
when in Auto or Cascade/ Ratio mode.

SPPercent REAL The value of SP expressed in percent of span of PV.
SPPercent = ((SP - PVEUMin) x 100) / PVSpan
PV Span calculation: PVSpan = (PVEUMax - PVEUMin)

SPHAlarm BOOL SP high alarm indicator.
Set when the SP > SPHLimit.

SPLAlarm BOOL SP low alarm indicator.
Set when the SP < SPLLimit.

PVPercent REAL PV expressed in percent of span.
PVPercent = ((PV- PVEUMin) x 100) / PVSpan
PV Span calculation: PVSpan = (PVEUMax - PVEUMin)

E REAL Process error. Difference between SP and PV, scaled in PV
units.

EPercent REAL The error expressed as a percent of span.
InitPrimary BOOL Initialize primary loop command. Set when not in

Cascade/Ratio mode or when CVInitializing is set. This signal
is normally used by the CVInitReq input of a primary PID loop.

WindupHOut BOOL Windup high indicator. Set when either a SP high, CV high, or
CV low limit (depending on the control action) has been
reached. This signal is typically used by the WindupHIn input
to prevent the windup of the CV output on a primary loop.

WindupLOut BOOL Windup low indicator. Set when either a SP, CV high, or CV
low limit (depending on the control action) has been reached.
This signal is typically used by the WindupLIn input to prevent
the windup of the CV output on a primary loop.

Ratio REAL Current ratio multiplier.
RatioHAlarm BOOL Ratio high alarm indicator. Set when Ratio > RatioHLimit.
RatioLAlarm BOOL Ratio low alarm indicator. Set when Ratio < RatioLLimit.
ZCDeadbandOn BOOL Zero crossing deadband indicator. When set the value of CV

does not change. If ZCOff is set, then ZCDeadbandOn is set
when | E | is within the ZCDeadband range. If ZCOff is
cleared, then ZCDeadbandOn is set when | E | crosses zero
and remains within the ZCDeadband range. ZCDeadbandOn
is cleared when | E | exceeds the deadband range or when
ZCDeadband = 0.

PVHHAlarm BOOL PV high-high alarm indicator. Set when PV ³ PVHHLimit.
Cleared when PV < (PVHHLimit - PVDeadband)

PVHAlarm BOOL PV high alarm indicator. Set when PV ³ PVHLimit. Cleared
when PV < (PVHLimit - PVDeadband)

PVLAlarm BOOL PV low alarm indicator. Set when PV £ PVLLimit. Cleared
when PV > (PVLLimit + PVDeadband)

PVLLAlarm BOOL PV low-low alarm indicator. Set when PV £ PVLLLimit.
Cleared when PV > (PVLLLimit + PVDeadband)

PVROCPosAlarm BOOL PV positive rate-of-change alarm indicator. Set when
calculated PV rate-of-change ³ PVROCPosLimit.

PVROCNegAlarm BOOL PV negative rate-of-change alarm indicator. Set when
calculated PV rate-of-change £ (PVROCNegLimit x -1).

DevHHAlarm BOOL Deviation high-high alarm indicator. Set when
PV ³ (SP + DevHHLimit). Cleared when
PV < (SP + DevHHLimit - DevDeadband)

DevHAlarm BOOL Deviation high alarm indicator. Set when
PV ³ (SP + DevHLimit). Cleared when

PV < (SP + DevHLimit - DevDeadband)
DevLAlarm BOOL Deviation low alarm indicator. Set when

PV £ (SP - DevLLimit). Cleared when
PV > (SP - DevLLimit + DevDeadband)

DevLLAlarm BOOL Deviation low-low alarm indicator. Set when
PV £ (SP - DevLLLimit). Cleared when
PV > (SP - DevLLLimit + DevDeadband)

ProgOper BOOL Program/operator control indicator. Set when in Program
control. Cleared when in Operator control.

CasRat BOOL Cascade/ratio mode indicator. Set when in the Cascade/Ratio
mode.

Auto BOOL Auto mode indicator. Set when in the Auto mode.
Manual BOOL Manual mode indicator. Set when in the Manual mode.
Override BOOL Override mode indicator. Set when in the Override mode.
Hand BOOL Hand mode indicator. Set when in the Hand mode.
DeltaT REAL Elapsed time between updates. This is the elapsed time in

seconds used by the control algorithm to calculate the process
output.

Status1 DINT Status of the function block.
InstructFault (Status1.0) BOOL The instruction detected one of the following execution errors.

This is not a minor or major controller error. Check the
remaining status bits to determine what occurred.

PVFaulted (Status1.1) BOOL Process variable (PV) health bad.
CVFaulted (Status1.2) BOOL Control variable (CV) health bad.
HandFBFaulted (Status1.3) BOOL HandFB value health bad.
PVSpanInv (Status1.4) BOOL Invalid span of PV. PVEUMax £ PVEUMin.
SPProgInv (Status1.5) BOOL SPProg < SPLLimit or SPProg > SPHLimit. The instruction

uses the limited value for SP.
SPOperInv (Status1.6) BOOL SPOper < SPLLimit or SPOper > SPHLimit. The instruction

uses the limited value for SP.
SPCascadeInv (Status1.7) BOOL SPCascade < SPLLimit or SPCascade > SPHLimit. The

instruction uses the limited value for SP.
SPLimitsInv (Status1.8) BOOL Limits invalid: SPLLimit < PVEUMin, SPHLimit > PVEUMax, or

SPHLimit < SPLLimit. If SPHLimit < SPLLimit, the instruction
limits the value using SPLLimit

RatioProgInv (Status1.9) BOOL RatioProg < RatioLLimit or RatioProg > RatioHLimit. The
instruction limits the value for Ratio.

RatioOperInv (Status1.10) BOOL RatioOper < RatioLLimit or RatioOper > RatioHLimit. The
instruction limits the value for Ratio.

RatioLimitsInv (Status1.11) BOOL Low limit < 0 or High limit < low limit.
CVProgInv (Status1.12) BOOL CVProg < 0 or CVProg > 100, or CVProg < CVLLimit or

CVProg > CVHLimit when CVManLimiting is set. The
instruction limits the value for CV.

CVOperInv (Status1.13) BOOL CVOper < 0 or CVOper > 100, or CVOper < CVLLimit or
CVOper > CVHLimit when CVManLimiting is set. The
instruction limits the value for CV.

CVOverrideInv (Status1.14) BOOL CVOverride < 0 or CVOverride > 100. The instruction limits the
value for CV.

CVPreviousInv (Status1.15) BOOL

CVEUSpanInv (Status1.16) BOOL Invalid CVEU span. The instruction uses a value of
CVEUMax = CVEUMin.

CVLimitsInv (Status1.17) BOOL CVLLimit < 0, CVHLimit > 100, or CVHLimit < CVLLimit. If
CVHLimit < CVLLimit, the instruction limits CV using CVLLimit.

CVROCLimitInv (Status1.18) BOOL CVROCLimit < 0. The instruction disables ROC limiting.
FFInv (Status1.19) BOOL FF < –100 or FF > 100. The instruction uses the limited value

for FF.

FFPreviousInv (Status1.20) BOOL

HandFBInv (Status1.21) BOOL HandFB < 0 or HandFB > 100. The instruction uses the limited
value for CV.

PGainInv (Status1.22) BOOL PGain < 0. The instruction uses a value of PGain = 0.
IGainInv (Status1.23) BOOL IGain < 0. The instruction uses a value of IGain = 0.
DGainInv (Status1.24) BOOL DGain < 0. The instruction uses a value of DGain = 0.
ZCDeadbandInv (Status1.25) BOOL ZCDeadband < 0. The instruction disables zero crossing

deadband.
PVDeadbandInv (Status1.26) BOOL PVDeadband < 0.
PVROCLimitsInv (Status1.27) BOOL PVROCPosLimit < 0, PVROCNegLimit < 0, or PVROCPeriod <

0.
DevHLLimitsInv (Status1.28) BOOL Deviation high-low limits invalid. Low-low limit < 0,

low limit < 0, high limit < 0, or high-high limit < 0. The
instruction uses 0 for the invalid limit.

DevDeadbandInv (Status1.29) BOOL Deviation deadband < 0. The instruction uses a value of
DevDeadband = 0.

Status2 DINT Timing status of the function block.
TimingModeInv(Status2.27) BOOL Invalid TimingMode value.

For more information about timing modes, see Function Block
Attributes.

RTSMissed (Status2.28) BOOL Only used in real time sampling mode. Set when
ABS | DeltaT - RTSTime | > 1 (.001 second).

RTSTimeInv (Status2.29) BOOL Invalid RTSTime value.
RTSTimeStampInv (Status2.30) BOOL Invalid RTSTimeStamp value.
DeltaTInv (Status2.31) BOOL Invalid DeltaT value.

 Description
The PID algorithm regulates the CV output in order to maintain the PV at the SP when the instruction
executes in Cascade/Ratio or Auto modes.
When ControlAction is set, the calculated value of EPercent and PVPIDPercent is negated before being used
by the control algorithm.
The following table describes how the instruction calculates the PID terms.
PID Term Method of Calculation

proportional The proportional term is calculated using:
§ PV when PVEProportional is set or
§ Error when PVEProportional is cleared
Set PGain = 0 to disable proportional control.

integral The integral term is calculated using Error. Set IGain = 0 to disable integral control.
Also, setting PGain = 0 when DependIndepend is set will disable integral control.

derivative The derivative term is calculated using:
§ PV when PVEDerivative is set or
§ Error when PVEDerivative is cleared
Set DGain = 0 to disable derivative control. Also, setting PGain = 0 when
DependIndepend is set will disable derivative control.
Derivative smoothing is enabled when DSmoothing is set and disabled when
DSmoothing is cleared. Derivative smoothing causes less CV output "jitter" as a
result of a noisy PV signal but also limits the effectiveness of high derivative gains.

 Computing CV

 Monitoring the PIDE Instruction
There is an operator faceplate available for the PIDE instruction.

 Autotuning the PIDE Instruction
The RSLogix 5000 PIDE autotuner provides an open-loop autotuner built into the PIDE instruction. You can
autotune from PanelView terminal or any other operator interface devices, as well as RSLogix 5000
software. The PIDE block has an Autotune Tag (type PIDE_AUTOTUNE) that you specify for those PIDE
blocks that you want to autotune.
The PIDE autotuner is installed with RSLogix 5000 software, but you need an activation key to enable it. The
autotuner is only supported in function block programming; it is not available in relay ladder or structured text
programming.
Use the Autotune tab to specify and configure the autotune tag for a PIDE block.

 Arithmetic Status Flags
Arithmetic status flags are set by the CV output.

 Fault Conditions
None

 Execution
Condition Function Block Action Structured Text Action:

prescan InstructionFirstScan is set.
instruction first scan If CVFault and CVEUSpanInv are set, see Processing Faults.

If CVFault and CVEUSpanInv are cleared:
1. CVInitializing is set.
2. If PVFault is set, PVSpanInv and SPLimitsInv are cleared. See Processing Faults.
3. The PID control algorithm is not executed.
4. The instruction sets CVEU = CVInitValue and CV = corresponding percentage.

CVInitValue is not limited by CVEUMax or CVEUMin. When the instruction calculates CV as the corresponding
percentage, it is limited to 0-100.

5. When CVInitializing and ManualAfterInit are set, the instruction disables auto and cascade/ratio modes. If the current mode
is not Override or Hand mode, the instruction changes to Manual mode. If ManualAfterInit is cleared the mode is not
changed.

6. All the operator request inputs are cleared.
7. If ProgValueReset set, all the program request inputs are cleared.
8. All the PV high-low, PV rate-of-change, and deviation high-low alarm outputs are cleared.
9. If CVInitReq is cleared, CVInitializing is cleared.

instruction first run ProgOper is cleared.
The instruction changes to Manual mode.

ProgOper is cleared.
The instruction changes to Manual mode.

EnableIn is cleared EnableOut is cleared. N/A
EnableIn is set The instruction executes.

EnableOut is set.
EnableIn is always set.
The instruction executes.

postscan No action taken. No action taken.
When CVInitReq is set, or during instruction first scan, or on a set to cleared transition of CVFault (bad to
good), the instruction initializes the CVEU and CV outputs to the value of CVInitValue. If the timing mode is
not oversample and EnableIn transitions from cleared to set, the instruction initializes the CVEU and CV

values. CVInitialization is cleared after the initialization and when CVInitReq is cleared.
The CVInitValue normally comes from the analog output’s readback value. The CVInitReq value normally
comes from the "In Hold" status bit on the analog output controlled by CVEU. The initialization procedure is
performed to avoid a bump at startup in the output signal being sent to the field device.
When using cascaded PID loops, the primary PID loop can be initialized when the secondary loop is
initialized or when the secondary loop leaves the Cascade/Ratio mode. In this case, move the state of the
InitPrimary output and SP output from the secondary loop to the CVInitReq input and CVInitValue input on
the primary loop.
The instruction does not initialize and the CVEU and CV values are not updated if CVFault or CVEUSpanInv
is set.

 Example

Example 1
The easiest way to implement a PIDE instruction is to create an function block routine in a program in a
periodic task. The default timing mode for the PIDE instruction is periodic. When the PIDE instruction is
used in a periodic task and in periodic timing mode, it automatically uses the periodic task's update rate as its
delta t update time. All you need to do is wire the process variable analog input into the PV parameter on the
PIDE instruction and wire the CVEU out of the PIDE instruction into the controlled variable analog output.
Optionally, you can wire the analog input’s fault indicator (if one is available) into the PVFault parameter on
the PIDE instruction. This forces the PIDE into Manual mode when the analog input is faulted and stops the
PIDE CVEU output from winding up or down when the PV signal is not available.

 Function Block

 Structured Text
PIDE_01.PV := Local:1:I.Ch0Data;

PIDE_01.PVFault := Local:1:I.Ch0Fault;

PIDE(PIDE_01);

Local:2:)O.Ch0Data :=PIDE_01.CVEU;

Example 2

Cascade control is useful when externally-caused upsets to the controlled variable occur often, which then
cause upsets to the process variable you are trying to control. For example, try to control the temperature of
liquid in a tank by varying the amount of steam fed into a heating jacket around the tank. If the steam flow
suddenly drops because of an upstream process, the temperature of the liquid in the tank eventually drops
and the PIDE instruction then opens the steam valve to compensate for the drop in temperature.
In this example, a cascaded loop provides better control by opening the steam valve when the steam flow
drops before the liquid temperature in the tank drops. To implement a cascaded loop, use a PIDE instruction
to control the steam valve opening based on a process variable signal from a steam flow transmitter. This is
the secondary loop of the cascaded pair. A second PIDE instruction (called the primary loop) uses the liquid
temperature as a process variable and sends its CV output into the setpoint of the secondary loop. In this
manner, the primary temperature loop asks for a certain amount of steam flow from the secondary steam
flow loop. The steam flow loop is then responsible for providing the amount of steam requested by the
temperature loop in order to maintain a constant liquid temperature.

 Function Block

 Structured Text
PrimaryLoop.PV := Local:1:I.CH0Data;
PrimaryLoop.CVInitReq := SecondaryLoop.InitPrimary;
PrimaryLoop.CVInitValue := SecondaryLoop.SP;
PrimaryLoop.WindupHIn := SecondaryLoop.WindupHOut;
PrimaryLoop.WindupLIn := SecondaryLoop.WindupLOut;

PIDE(PrimaryLoop);

SecondaryLoop.PV := Local:1:I.Ch1Data;
SecondaryLoop.SPCascade := PrimaryLoop.CVEU;

PIDE(SecondaryLoop);

Local:2:O.Ch0Data:= SecondaryLoop.CVEU;

For a cascaded pair of loops to work correctly, the secondary loop must have a faster process response than
the primary loop. This is because the secondary loop’s process must be able to compensate for any upsets
before these upsets affect the primary loop’s process. In this example, if steam flow drops, the steam flow

must be able to increase as a result of the secondary controller’s action before the liquid temperature is
affected.
To set up a pair of cascaded PIDE instructions, set the AllowCasRat input parameter in the secondary loop.
This allows the secondary loop to be placed into Cascade/Ratio mode. Next, wire the CVEU from the
primary loop into the SPCascade parameter on the secondary loop. The SPCascade value is used as the
SP on the secondary loop when the secondary loop is placed into Cascade/Ratio mode. The engineering
unit range of the CVEU on the primary loop should match the engineering unit range of the PV on the
secondary loop. This lets the primary loop scale its 0-100% value of CV into the matching engineering units
used for the setpoint on the secondary loop.
The PIDE instruction supports several other features to more effectively support cascade control. Wire the
InitPrimary output on the secondary loop into the CVInitReq input on the primary loop and wire the SP output
of the secondary into the CVInitValue input on the primary. This sets the CVEU value of the primary loop
equal to the SP of the secondary loop when the secondary loop leaves Cascade/Ratio mode. This allows a
bumpless transfer when you place the secondary loop back into Cascade/Ratio mode. Also, wire the
WindupHOut and WindupLOut outputs on the secondary loop into the WindupHIn and WindupLIn inputs on
the primary loop. This causes the primary loop to stop increasing or decreasing, as appropriate, its value of
CVEU if the secondary loop hits a SP limit or CV limit and eliminates any windup on the primary loop if these
conditions occur.
Example 3
Ratio control is typically used to add a fluid in a set proportion to another fluid. For example, if you want to
add two reactants (say A and B) to a tank in a constant ratio, and the flow rate of reactant A may change
over time because of some upstream process upsets, you can use a ratio controller to automatically adjust
the rate of reactant B addition. In this example, reactant A is often called the "uncontrolled" flow since it is
not controlled by the PIDE instruction. Reactant B is then called the "controlled" flow.
To perform ratio control with a PIDE instruction, set the AllowCasRat and UseRatio input parameters. Wire
the uncontrolled flow into the SPCascade input parameter. When in Cascade/Ratio mode, the uncontrolled
flow is multiplied by either the RatioOper (when in Operator control) or the RatioProg (when in Program
control) and the resulting value is used by the PIDE instruction as the setpoint.

 Function Block

 Structured Text
PIDE_01.PV := ControlledFlow;

PIDE_01.SPCascade := UncontrolledFlow;

PIDE(PIDE_01);

Local:2:O.Ch0Data := PIDE_01.CVEU;

 Switching Between Program Control and Operator Control
The PIDE instruction can be controlled by either a user program or an operator interface. You can change
the control mode at any time. Program and Operator control use the same ProgOper output. When
ProgOper is set, control is Program; when ProgOper is cleared, control is Operator.
The following diagram shows how the PIDE instruction changes between Program control and Operator
control.

(1) The instruction remains in Operator control mode when ProgOperReq is set.

 Operating Modes
The PIDE instruction supports the following PID modes.
PID Operating Mode Description

Cascade/Ratio While in Cascade/Ratio mode the instruction computes the change in CV. The
instruction regulates CV to maintain PV at either the SPCascade value or the
SPCascade value multiplied by the Ratio value. SPCascade comes from either
the CVEU of a primary PID loop for cascade control or from the "uncontrolled"
flow of a ratio-controlled loop.
Select Cascade/Ratio mode using either OperCasRatReq or ProgCasRatReq:

Set OperCasRatReq to request Cascade/Ratio mode. Ignored when
ProgOper, ProgOverrideReq, ProgHandReq, OperAutoReq, or
OperManualReq is set, or when AllowCasRat is cleared.
Set ProgCasRatReq to request Cascade/Ratio mode. Ignored when
ProgOper or AllowCasRat is cleared or when ProgOverrideReq,
ProgHandReq, ProgAutoReq, or ProgManualReq is set.

Auto While in Auto mode the instruction computes the change in CV. The instruction
regulates CV to maintain PV at the SP value. If in program control, SP =
SPProg; if in Operator control, SP = SPOper.
Select Auto mode using either OperAutoReq or ProgAutoReq:

Set OperAutoReq to request Auto mode. Ignored when ProgOper,
ProgOverrideReq, ProgHandReq, or OperManualReq is set.
Set ProgAutoReq to request Auto mode. Ignored when ProgOper is cleared
or when ProgOverrideReq, ProgHandReq, or ProgManualReq is set.

Manual While in Manual mode the instruction does not compute the change in CV. The
value of CV is determined by the control. If in Program control, CV = CVProg; if
in Operator control, CV = CVOper.
Select Manual mode using either OperManualReq or ProgManualReq:

Set OperManualReq to request Manual mode. Ignored when ProgOper,
ProgOverrideReq, or ProgHandReq is set.
Set ProgManualReq to request Manual mode. Ignored when ProgOper is
cleared or when ProgOverrideReq or ProgHandReq is set.

Override While in Override mode the instruction does not compute the change in CV.

CV = CVOverride, regardless of the control mode. Override mode is typically
used to set a "safe state" for the PID loop.
Select Override mode using ProgOverrideReq:

Set ProgOverrideReq to request Override mode. Ignored when
ProgHandReq is cleared.

Hand While in Hand mode the PID algorithm does not compute the change in CV.
CV = HandFB, regardless of the control mode. Hand mode is typically used to
indicate that control of the final control element was taken over by a field
hand/auto station.
Select Hand mode using ProgHandReq:

Set ProgHandReq to request hand mode. This value is usually read as a
digital input from a hand/auto station.

The Cascade/Ratio, Auto, and Manual modes can be controlled by a user program when in Program control
or by an operator interface when in Operator control. The Override and Hand modes have a mode request
input that can only be controlled by a user program; these inputs operate in both Program and Operator
control.

 Selecting the Setpoint
Once the instruction determines program or operator control and the PID mode, the instruction can obtain the
proper SP value. You can select the cascade/ratio SP or the current SP.
Cascade/Ratio SP
The cascade/ratio SP is based on the UseRatio and ProgOper values.

Current SP
The current SP is based on the Cascade/Ratio mode, the PVTracking value, auto mode, and the ProgOper
value.

SP High/Low Limiting
The high-to-low alarming algorithm compares SP to the SPHLimit and SPLLimit alarm limits. SPHLimit
cannot be greater than PVEUMax and SPLLimit cannot be less than PVEUMin.

Updating the SPOper and SPProg Values
The PIDE instruction makes SPOper = SP or SPProg = SP to obtain bumpless control switching between
Program and Operator control or when switching from Cascade/Ratio mode.

 PV High/Low Alarming
The high-high to low-low alarming algorithm compares PV to the PV alarm limits and the PV alarm limits plus
or minus the PV alarm deadband

(1) During instruction first scan, the instruction clears all the PV alarm outputs. The instruction also clears
the PV alarm outputs and disables the alarming algorithm when PVFaulted is set.
PV Rate-of-Change Alarming
PV rate-of-change (ROC) alarming compares the change in the value of PV over the PVROCPeriod against
the PV positive and negative rate-of-change limits. The PVROCPeriod provides a type of deadband for the
rate-of-change alarm. For example, if you use a ROC alarm limit of 2°F/second with a period of execution of
100 ms, and an analog input module with a resolution of 1°F, then every time the input value changes, a
ROC alarm is generated because the instruction sees a rate of 10°F/second. However, by entering a
PVROCPeriod of at least 1 sec, the ROC alarm is only generated if the rate truly exceeds the 2°F/second
limit.
The ROC calculation is only performed when the PVROCPeriod has expired. The rate-of-change is
calculated as:

ElapsedROCPeriod = ElapsedROCPeriod + ElapsedTimeSinceLastExecution
If ElapsedROCPeriod ³ PVROCPeriod then:
This value: Is:

PVROC

ElapsedROCPeriod

Once PVROC has been calculated, the PV ROC alarms are determined as follows:

(1) During instruction first scan, the instruction clears the PV ROC alarm outputs. The instruction also clears
the PVROC alarm outputs and disables the PV ROC alarming algorithm when PVFaulted is set.

 Converting the PV and SP Values to Percent
The instruction converts PV and SP to a percent and calculates the error before performing the PID control
algorithm. The error is the difference between the PV and SP values. When ControlAction is set, the values
of EPercent, E, and PVPIDPercent are negated before being used by the PID algorithm.

(1) PVPIDPercent and Deviation are internal parameters used by the PID control algorithm.

 Deviation High/Low Alarming
Deviation is the difference in value between the process variable (PV) and setpoint (SP). Deviation alarming
alerts the operator to a discrepancy between the process variable and the setpoint value.
The high-high to low-low alarming algorithm compares the deviation to deviation alarm limits and the
deviation alarm limits plus or minus the deadband.

(1) During instruction first scan, the instruction clears the deviation alarm outputs. The instruction also
clears the deviation alarm outputs and disables the alarming algorithm when PVFaulted or PVSpanInv is set.

 Zero Crossing Deadband Control
You can limit CV such that its value does not change when error remains within the range specified by
ZCDeadband (| E | £ ZCDeadband).

The instruction disables the zero crossing algorithm and clears ZCDeadband under these conditions:
§ during instruction first scan
§ ZCDeadband £ 0
§ Auto or Cascade/Ratio is not the current mode
§ PVFaulted is set
§ PVSpanInv is set
Feedforward Control

 Selecting the Control Variable
Once the PID algorithm has been executed, select the CV based on program or operator control and the
current PID mode.

CV Windup Limiting
Limit the CV such that its value cannot increase when WindupHIn is set or decrease when WindupLIn is set.
These inputs are typically the WindupHOut or WindupLOut outputs from a secondary loop. The WindupHIn
and WindupLIn inputs are ignored if CVInitializing, CVFault, or CVEUSpanInv is set.

CV Percent Limiting
The following diagram illustrates how the instruction determines CV percent limiting.

(1) During instruction first scan, the instruction clears the alarm outputs.
CV High/Low Limiting
The instruction always performs alarming based on CVHLimit and CVLLimit. Limit CV by CVHLimit and
CVLLimit when in auto or cascade/ratio mode. When in manual mode, limit CV by CVHLimit and CVLLimit
when CVManLimiting is set. Otherwise limit CV by 0 and 100 percent.

(1) During instruction first scan, the instruction clears the alarm outputs.
CV Rate-of-Change Limiting
The PIDE instruction limits the rate-of-change of CV when in Auto or Cascade/Ratio mode or when in Manual
mode and CVManLimiting is set. A value of zero disables CV rate-of-change limiting.
The CV rate-of-change is calculated as:

where DeltaT is in seconds.
Once CV rate-of-change has been calculated, the CV rate-of-change alarms are determined as follows:

(1) During instruction first scan, the instruction clears the alarm output. The instruction also clears the alarm
output and disables the CV rate-of-change algorithm when CVInitializing is set.
(2) When in Auto or Cascade/Ratio mode or when in Manual mode and CVManLimiting is set, the instruction
limits the change of CV.
Updating the CVOper and CVProg Values
If not in the Operator Manual mode, the PIDE instruction sets CVOper = CV. This obtains bumpless mode
switching from any control to the Operator Manual mode.

 Primary Loop Control
Primary loop control is typically used by a primary PID loop to obtain bumpless switching and anti-reset
windup when using Cascade/Ratio mode. The primary loop control includes the initialize primary loop output
and the anti-reset windup outputs. The InitPrimary output is typically used by the CVInitReq input of a
primary PID loop. The windup outputs are typically used by the windup inputs of a primary loop to limit the
windup of its CV output.

(1) During instruction first scan, the instruction sets InitPrimary.
(2) When CVInitializing is set or when not in Cascade/Ratio mode the instruction sets InitPrimary.

(3) When CVInitializing is cleared and in Cascade/Ratio mode, the instruction clears InitPrimary.
(4) During instruction first scan, the instruction clears the windup outputs. The instruction also clears the
windup outputs and disables the CV windup algorithm when CVInitializing is set or if either CVFaulted or
CVEUSpanInv is set.
(5) The instruction sets WindupHOut when SPHAlarm is set, or when ControlAction is cleared and
CVHAlarm is set, or when ControlAction is set and CVLAlarm is set.
The SP and CV limits operate independently. A SP high limit does not prevent CV from increasing in value.
Likewise, a CV high or low limit does not prevent SP from increasing in value.
(6) The instruction clears WindupHOut when SPHAlarm is cleared, and not (ControlAction is cleared and
CVHAlarm is set), and not (ControlAction is set and CVLAlarm is set).
(7) The instruction sets WindupLOut when SPLAlarm is set, or when ControlAction is cleared and CVLAlarm
is set, or when ControlAction is set and CVHAlarm is set.
The SP and CV limits operate independently. A SP low limit does not prevent CV from increasing in value.
likewise a CV low or high limit does not prevent SP from increasing in value.
(8) The instruction clears WindupLOut when SPLAlarm is cleared and not (ControlAction is cleared and
CVLAlarm is set) and not (ControlAction is set and CVHAlarm is set).

 Processing Faults
The following table describes how the instruction handles execution faults:
Fault Condition Action

CVFaulted is set or
CVEUSpanInv is set

§ Instruction is not initialized, CVInitializing is cleared
§ Compute PV and SP percent, calculate error, update internal

parameters for EPercent and PVPIDPercent
§ PID control algorithm is not executed
§ Disable the Auto and Cascade/Ratio modes. If Override or Hand is

not the current mode, set to Manual mode.
§ Set CV to value determined by Program or Operator control and mode

(Manual, Override, or Hand).
PVFaulted is set § Disable the Auto and Cascade/Ratio modes. If Override or Hand is

not the current mode, set to Manual mode
§ PV high-low, PV rate-of-change, and deviation high-low alarm outputs

are cleared
§ PID control algorithm is not executed
§ Set CV to value by determined by Program or Operator control and

mode (Manual, Override, or Hand).
PVSpanInv is set or
SPLimitsInv is set

§ Disable the Auto and Cascade/Ratio modes. If Override or Hand is
not the current mode, set to Manual mode

§ Do not compute PV and SP percent
§ PID control algorithm is not executed
§ Set CV to value by determined by Program or Operator control and

mode (Manual, Override, or Hand).
RatioLimitsInv is set and
CasRat is set and
UseRatio is set

§ If not already in Hand or Override, set to Manual model
§ Disable the Cascade/Ratio mode
§ Set CV to value determined by Program or Operator control and mode

(Manual, Override, or Hand).
TimingModeInv is set or
RTSTimeStampInv is set or
DeltaTInv is set

§ If not already in Hand or Override, set to Manual mode

